Combining satellite data, surface aerosol measurments and dispersion modeling for characterization of air pollution episode during Grimsvötn volcanic eruption

J. Tamminen¹, J. Hakkarainen¹, R. Hillamo¹, Veli-Matti Kerminen¹², M. Sofiev¹, J. Vira¹ and J. Niemi²³

¹Finnish Meteorological Institute (FMI)

²University of Helsinki

³Helsinki Region Environmental Services Authority

Aura Science Team meeting

Helsinki, September 13-15, 2011

Grimsvötn/Iceland eruption 21.5 2011

Eyjafjallajökull eruption April/May 2010

The European air traffic was partly closed for almost one week starting on 15.4

- Transport of the ash is forecasted using dispersion models.
- Measurments needed to calibrate the source term for models and for model verification
- OMI measurments used:
 - ash (absorbing aerosol index, AAI)
 - SO₂

OMI VFD images of Grimsvötn eruption 22.5.2011

AAI:

Separation might be caused by potential differences in the timing and ejection heights of SO₂ and ash particles emissions, or by the sedimentation of ash particles from the dispersing plume.

volcanic ash and SO₂

observed in OMI data

after the eruption is

GOME-2 and OMI on May 23

- Good agreement in GOME-2 and OMI AAI and SO₂ measurements
- Separation of SO₂ and ash clearly visible

Top row OMI SO2 and AAI Bottom GOME-2 SO2 and AAI

Silam dispersion model forecast

Fig. 4. The SILAM dispersion model results for the column-integrated volcanic ash concentration (mg m⁻²) during 24–25 May 2011.

Dispersion of ash

- The eruption of Grimsvötn started on 21 May, was at its strongest on 22 May, and then rapidly weakened during the next few days.
- In OMI data we see high AAI values over Iceland on 22 May and similarly high values South of Iceland in the following day.
- On May 23 the ash is close to Norwegean coast and on 25th it arrives to Southern Finland and Estonia.

OMI AAI index during four days

Characterizing the pollution episode

- Increased PM10 values clear on May 25th
- Concentration of smaller particles not increased

Mass consentration (µg m⁻³) of particulate matter in Helsinki May 22-28, 2011.

- The air quality decreases in the Southern Finland for about 8 hours.
- The highest PM10 values in Helsinki were observed around noon
- Annual average of PM10 in Helsinki area is about 20 µg m⁻³

Mass consentration (µg m⁻³) of particulate matter

OMI AAI on two successive orbits above southern Finland

Particle analysis

Volcanic ash

Ash mixed with sea salt

Sea salt

Secondary particles

Combustion derived primary particles

- 193 particles collected
- Transmission electron microscope / x-ray fluoresense (TEM/EDX) used to analyse individual particles in Helsinki
- Comparison with Grimsvötn volcanic ash fallout measured in Iceland confirmed that volcanic ash was measured in Helsinki
- In large size group mainly volcanic ash and ash mixed with sea salt
- Only very little sulfate was observed

Particles measured

1 ash

2-4 ash with sea salt

6 sea salt

Conclusions

- OMI ash and SO2 measurements were used to track and forecast the dispersion of the Grimsvötn volcanic plume
- The updated OMI Very Fast Delivery products of SO2 and AAI were useful
- Volcanic plume arrived to Finland on May 25th and the air quality was decreased for about 8 hours in Southern Finland due to increased PM10 concentrations.
- Combination of satellite measurements, dispersion model and detailed air quality measurments were used to characterize the pollution episode

Courtesy NASA / Colin Seftor, SSAI